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ABSTRACT 

A systematic experimental study of viscous air 
damping in laterally moving planar microstructures is 
reported. Previous studies indicated that Couette and Stokes 
flow models underestimated microstructural damping. To 
investigate this discrepancy, a series of lateral resonant 
microstructures with different damp plates and combs was 
fabricated with polysilicon surface micromachining. The 
resonant frequencies and quality factors of the structures 
were measured electrically. By examining these data, the 
damping due to different geometries were isolated and com- 
pared to theory. The results indicated that if edge and finite- 
size effects are included in the model, reasonably accurate 
prediction on the quality factors can be obtained even for 
small geometries and comb drives. An empirical formula 
was developed that predicts quality factor for a range of 
plate size and comb designs. The damping effects as a func- 
tion of structural thickness and structure-to-substrate sepa- 
ration are also reported. 

INTRODUCTION 

Surface-micromachined, laterally driven microstruc- 
tures have served as important research vehicles for many 
microactuators and microsensors [ 11. In these devices, the 
damping level determines their amplitude response and sta- 
bility, and therefore is a crucial parameter to their function- 
ality. In contrast to vertically driven devices, in which 
squeeze film damping is the major source of energy dissipa- 
tion [2], viscous drag of the ambient fluid is the dominant 
dissipative source in laterally driven structures. Damping in 
laterally moving microstructures was previously investi- 
gated with Couette [3,4] and Stokes flows [5] as the models. 
The estimated quality factor Q based on both models were 
consistently higher than the measured values. 

In this paper, we report a systematic investigation on 
damping in laterally oscillating microstructures by includ- 
ing edge and finite-size effects. A series of electrostatically 
driven test devices was designed to isolate the effects of var- 
ious geometrical attributes. An empirical formula is pre- 
sented that predicts quality factor Q for a range of lateral 
microstructures. 
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THEORETICAL BACKGROUND 

The microdynamical system under study can be 
modeled as a forced oscillating spring system with a viscous 
damper. A planar mass M, driven by a periodic force F(t),  is 
subjected to a restoring force from a suspension with spring 
constant k,  and a damping force with damping coefficient c. 

For the one-sided single-folded beam structure, the 
spring constant is given by [6] 

12EI w 3  k = -  13 = 

where Z = ( h w 3 / 1 2 )  is the moment of inertia of the 
beams, h, w, and 1 are the thickness, width, and length of the 
beams, respectively, and E is the Young's modulus. The 
undamped natural frequency (f,) of this system is given by 

The effective mass of the system, M, is related to the 
effective area, AM: 

1 12 
M = phA, = ph  (AP + %Ab) (3) 

where Ap, A,, and Ab are the top areas of the plate, the outer 
truss, and the supporting beams, respectively. 

Some of the energy dissipative processes in a lateral 
moving microstructure are shown schematically in Fig. 1. In 
general, when the characteristic dimension of the structure d 
(related to the minimum feature size and thickness of the 
structure, and the thickness of the fluid layer) is much larger 
than the mean free path of the ambient gas h (d > looh), the 
flow is within the continuum regime. When (d < h), the flow 
is in the molecular regime. The intermediate region (h < d c 
100h) is called Knudsen flow. 

Since the characteristic dimension of our test struc- 
tures is d = 2 pm, and with air at one atmosphere and room 
temperature h = 0.06 pm, we have (d = 33h). The flow is in 
the marginal region between the continuum and Knudsen 
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Figure 1 Dissipative processes in a lateral resonator. 
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regimes. Since Knudsen flow is difficult to characterize ana- 
lytically, we will assume continuum flow in our analysis, 
which predicts laminar flow in the fluid layers surrounding 
the moving structures. This assumption will be examined in 
light of experimental results. 

With this assumption, the fluid between two parallel 
plates in relative motion undergoes Couette flow with a lin- 
ear velocity profile. The quality factor due to Couette flow 
alone, Qd, with fluid thickness d, is given by [7] 

(4) 
1 - pA9 = 2xfrPAq 

~ 

Qd d m  dk 
where p is the absolute viscosity of the ambient fluid, and 
A,  is the damping-related effective area of the system, given 
by A ,  = A, + 0.5 ( A ,  + A , )  . 

The motion of the fluid on top of the plate can be 
modeled as Stokes flow [5 ] ,  in which the amplitude of fluid 
oscillation decays exponentially with the distance from the 
plate surface, while phase lag increases linearly. The pene- 
tration depth, 6, which is defined as the distance at which 
the motion amplitude of the fluid decreases by a factor of e,  
is given by [8]: 

Figure 2 Penetration depth 6 as a function of frequencyf 

To account for the quality factor (Q,) related to 
damping between the comb fingers, Eq. (4) can be used 
again [5]  

(7) 

where A,  is the area of the comb finger overlap, and d,  is 
the comb gap. 

The overall quality factor Q can be obtained by 
combining Eqs. (4), (6) ,  and (7): 

Since Q is a function of both AM and A,, damping 
effects due to different geometry (A4) cannot be obtained 
from direct comparison of Q alone. Instead, we use the 
quantity ( l /Qfr) for comparison: 

6 ( 0 )  = - i: ( 5 )  

where (U = p/p) is the kinetic viscosity of the fluid. 
Equation (5) implies that a slow oscillating plate in a vis- 
cous medium is expected to drag substantially more amount 
of fluid compared to a fast moving one in a fluid of low vis- 
cosity. Penetration depth is plotted as a function of oscillat- 
ing frequency for some common fluids in Fig. 2. 

A practical use of 6 is that the fluid beyond the pen- 
etration depth may be assumed stationary. Thus Stokes flow 
on the top surface can be approximated with the Couette 
formula by replacing d with 6, provided that the oscillation 
frequency is moderately low. With this approximation, the 
quality factor due to drag on the top surface alone (Qs) is 

1 2XfrPAS 
Qs 6 k  (6 )  - - - ~  

This contribution is roughly 10% of that from Couette 
damping (ford = 2 pm,f,. = 10 kHz, air). 

Note that AM is factored out from this expression. Since E 
and (wA) are designed to be the same, the damping contribu- 
tions from different geometries can be separated. 

Finally, it should be noted that due to finite process 
nonuniformity across the wafer, the structures from differ- 
ent dies of the same wafer are not identical. Also, variations 
of both f ,  and Q are mainly results of variation in w across 
the wafer. However, the quantity VJQ) is almost constant 
for the same design from die to die: 

which is independent of E and w. This suggests a way to 
average the quantity ( l/Qfr) obtained for the same design on 
different dies for better comparison. 
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EXPERIMENTAL RESULTS 
Design of test structures 

The layout and cross-sectional view of one of the 
test devices is shown in Fig. 3. The ground plate is used to 
reduce the vertical levitation effect [9]. All structures have 
identical, one-side-only single-folded beam suspension and 
20-finger drive and sense combs. The first group (P series) 
of test structures have damp plates of various sizes. The sec- 
ond group of test structures have damp combs with various 
numbers of fingers, with (C series) or without (D series) the 
outside fixed comb fingers. SEM micrographs of some of 
the completed structures are shown in Fig. 4. 

Characterization technique 
The test deviccs are driven into lateral motion with 

an ac signal (20 V p-p) on top of a 20 V dc bias applied to 
one of the fixed combs (drive port) [3]. The displacemcnt 
current caused by the motion is detected by sensing at the 
other comb (sense port) with the electromechanical ampli- 
tude modulation (EAM) method 1101. A recorded spectrum Slauonary Comb Movable planar ivuclu~c Anchor 

. .  

of resonant amplitude as a function of frequency is shown in 
Fig. 5. From this plot, bothf, and Q can be obtained. The 
oscillating amplitudes at resonance are within the range of 8 
to 12 pm. Tests indicate that the influence of resonant 
amplitude on f, and Q is not observable. Measurements for 

averaged. 

Figure ' and cross section Of a lateral resonator' the Same are repeated in ten different dies and 

Figure 5 The measured amplitude and phase response 
curves. 

For the PO structures, the dimensions and its charac- 
teristics calculated with Eqs. (1-3) and (8) are listed in 
Table 1 .  The values E = 140 GPa and p = 2.33 are 
used in the calculations. 

The measured f,is 11.7 + 0.2 kHz, and Q is 16.6 + 
0.4. Results measured from other units are all in close 
agreement with the calculated values, with Q being consis- 
tently lower than that predicted with the Stokes theory. 

Damping due to plate geometries 
First, we study the damping contribution from plate 

geometries. The structures Pep6  have plate areas varying 
from 0 to 6 x lo4 pm2 in increment of 1 x lo4 pn2. The 

Figure 4 SEM micrographs of test structures (P4 and C). 
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Table 1: Dimension and estimated characteristics of the PO 
series. All quantities, except those followed by *, are the 

same for all structures. 

18 

16 

14 

12 

0 , '  

beam width (w) 
beam length (1) 
structure thickness (h) 
air film thickness (d) 
finger width (w,) 
finger gap (d,) 
plate area (Ap) * 
truss area (At) 
beam area (Ab) 
finger area (A,) * 
effective mass area (AM) * 
effective damp area (A,) * 
spring constant (k )  
effective mass (M) * 
resonant frequency ( fr)  * 
quality factor (e) * 

s i  
i I  

- 
1 4  

I .  - 
- 

I O '  ' ' ' ' ' ' 

2.0 pm 
200 pm 
2.1 pm 
2.1 pm 
2.0 pm 
2.0 pm 

1.04 x lo4 pm2 

0.16 x lo4 pm2 
0.32 x lo4 pm2 

0.11 x io4 pm2 

1.12 x io4 pm2 
1.18 x io4 pm2 
0.28 pN.pm-' 

0.052 pg 
1 1.65 lcHz 

26.3 

measured Q and ( l/efr) are plotted in Fig. 6. It can be seen 
that Q does not vary linearly with plate area, while (l/Ur) 
does. Table 2 compares the average change in ( l/@J for an 
increase of 1 x lo4 pm2 in area. From Eqs. (4) and (6): 

P O  P 1  P 2  P 3  P 4  P S  P 6  
Sbuctarea 

Figure 6 Measured Q and ( l/Qfr) for structures Px. 

Table 2: Measured and estimated A( l/Qfr) for Px 
Structure Measured A( l/Qfr) Estimated A( llQfr) 

Damping due to comb fingers 

Second, we study the damping contribution from 
comb fingers. Test structure C has 20 comb fingers on each 
side plus two sets of stationary fingers. The structure D is 
identical to C, except that the fixed fingers are removed. The 
structure CO has the central truss only. The results are listed 
in Table 3. 

Table 3: Measured results for C, D, and CO 

Structure f r  Q 1fWr 
[ H z l  [ Hz-l] 

CO 10.7 15.0 6.2 
D 9.6 13.5 7.7 
C 9.6 12.8 8.1 

A full set of comb structures contribute to damping 
in several ways: increasing the plate damping (A4), generat- 
ing inter-comb damping by increasing A,, as well as provid- 
ing possible squeeze film damping een the moving and 
fixed fingers (not included in the t 
results of D and CO, damping effects produced by comb 
structures to the are as plate damper can bq obtained; 
and by contrasting (U@,) for C and D, i 
due to the presence of the fixed fingers 
The sum of them is the total damping CO 

comb structure, which is also measured 
(l/Wr) between C and CO. Results are li 
comparison. Also included is the result 
for CO and PO, which gives the damping contribution of a 
small planar structure-the central truss of 10 pm x220 pm. 

Table 4: Measured 

[ HZ1] [ Hz-'1 
c-CO 1.9 If: 0.3 1.2 
D-CO 1.5 f 0.3 0.6 

Direct air resistance 

Third, we investigate the effects th 
the detailed geometry of the structure. The 50 pm x 200 pm 
damp plates for structures P1 and X1 are oriented 90" rela- 
tive to each other. In P1, the long side of the plate is along 
the direction of motion, while in X1 the long side is facing 
the motion direction. The results are listed in Table 5. 
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Table 5: Measured results for Pl and X i  
stnrcturr f r  Q W r  

FHZI [io4 HZ-9 
P1 8.8 17.8 6.4 
x1 8.8 17.0 6.7 - 

Comparing P1 and XI, we have &I/@,) s (0.3 f 
0.1) x 104 HZ". Consistent with theoretical reasoning, XI, 
with a larger area perpendicular to the direction of motion, 
has a slightly larger damping. This damping is most proba- 
bly a result of dinct air resistance. It is reasonable to 
assume that this term (Qd is velocity-squared damping, and 
it is proportional to the density of the fluid pfand the cross 
section ana  facing the dinction of motion. 

Dependence of damping on d and h 
Finally, the effects of air film thickness d and struc- 

t u n  thickness h on the damping arc studied. Different d and 
h axe fabricated with values at 2.1.3.1, and 4.1 p. Q andf, 
are measured for the same design P2 from a total of nine d 
and h combinations. Although Eq. (2) predicts that the nso- 
nant frequency is independent of both d aod h in theory, the 
measured values for fr increase slightly with increasing h 
and d, probably a result of increasing effective w with 
increasing h (a process limitation). To eliminate this effect, 
the measuredf, and Q for all combinations are scaled to the 
frequencyf, = 7.2 kHz (at d = 2.1 and h = 2.1 p). nK 
values of Q for €2 arc plotted as a function of d and h in Fig. 
7, When d (or h) increases from 2.1 to 4.1 pm, Q increases 
by a factor of 1.3 (or 1.6). 

1 

4. I IO' . ' ' 
2.1 3.  I 

h (Irm) 

Flgurt 7 Mevufed Q U fudoas of scpmtion d and film 
thickness A 

DISCUSSIONS 
Edge and flnlte-size c k t a  

Experimental results indicate that the Stokes theory 
agrees rwonably well with the experimental nsults for 
large damp plates (P series), but failed for small dimensioa 
(CO) and comb structures (C and D). The measured damp 
ing by the central truss in CO is twice the estimated value. 
Damp combs introduce a significant amount of damping, 
which decreases only slightly when thc fixed fingers are 
removed. The measured contributioa from comb fingers in 
D is 2.5 times the theoretical value. Inter-comb damping 
(obtained by comparing C and D) is described well by Eq. 
(7), and the squeeze film damping or pumping effect. if any, 
must be negligible. 

For a moving plate of finite arca, the penetration 
depth is bener described with the bounAary layer theory 
[ 1 I], as shown in Fig. 8. The penetration depth is smaller at 
the leading edge, and additional fluid volume is dragged 
behind the trailing edge [12]. This suggests an edge effect 
which becomes significant for small structures. 

V - 
Figure 8 Boundary layer thickness over a flat place of finite 

Size. 

A moving plate of finite ana also drags additional 
fluid volume along its sides, again resulting in additional 
damping for small dimension structunes, a finite-size effect. 
Both the finite-size and edge effects arc most prominent in 
comb structures, which arc regular arrays of small dimen- 
sion fingers. An alternative in examining comb structures is 
to use the area outlined by the outer boundary of the comb 
(subtracting mas for fixed fingers) for damping caicula- 
tion, which would include both the ana of the fingers and 
the iinger gaps. This results in a calculated value much 
closer to the measured value. Theoretically, it is quite rea- 
sonable to assume that the fluid volumes above both the 
comb fingers and the finger gaps arc dragged into motion 
due to their proximity. 

Empirical formuIa for Q estimatfon 
Taking edge and bnite-sh effects into consider- 

ation, the damping generated by plate geometries can be 
generalized as 



Table 5: Measured results for P1 and X1 
Structure f r  Q llefr 

[kHz1 [ Hz-'1 
P1 8.8 17.8 6.4 
x1 8.8 17.0 6.7 

Comparing P1 and X1, we have A(l/Qfr) = (0.3 f 
0.1) x 10" Hz-'. Consistent with theoretical reasoning, XI, 
with a larger area perpendicular to the direction of motion, 
has a slightly larger damping. This damping is most proba- 
bly a result of direct air resistance. It is reasonable to 
assume that this term (Qh)  is velocity-squared damping, and 
it is proportional to the density of the fluid pf and the cross 
section area facing the direction of motion. 

Dependence of damping on d and h 
Finally, the effects of air film thickness d and struc- 

ture thickness h on the damping are studied. Different d and 
h are fabricated with values at 2.1,3.1, and 4.1 pm. Q and f, 
are measured for the same design P2 from a total of nine d 
and h combinations. Although Eq. (2) predicts that the reso- 
nant frequency is independent of both d and h in theory, the 
measured values for f, increase slightly with increasing h 
and d, probably a result of increasing effective w with 
increasing h (a process limitation). To eliminate this effect, 
the measured f, and Q for all combinations are scaled to the 
frequencyf, = 7.2 kHz (at d = 2.1 pm and h = 2.1 pm). The 
values of Q for P2 are plotted as a function of d and h in Fig. 
7. When d (or h) increases from 2.1 to 4.1 pm, Q increases 
by a factor of 1.3 (or 1.6). 

01 

Figure 7 
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Measured Q as functions of separation d and film 
thickness h. 

DISCUSSIONS 

Edge and finite-size effects 

Experimental results indicate that the Stokes theory 
agrees reasonably well with the experimental results for 
large damp plates (P series), but failed for small dimension 
(CO) and comb structures (C and D). The measured damp- 
ing by the central truss in CO is twice the estimated value. 
Damp combs introduce a significant amount of damping, 
which decreases only slightly when the fixed fingers are 
removed. The measured contribution from comb fingers in 
D is 2.5 times the theoretical value. Inter-comb damping 
(obtained by comparing C and D) is described well by Eq. 
(7), and the squeeze film damping or pumping effect, if any, 
must be negligible. 

For a moving plate of finite area, the penetration 
depth is better described with the boundary layer theory 
[ 111, as shown in Fig. 8. The penetration depth is smaller at 
the leading edge, and additional fluid volume is dragged 
behind the trailing edge [12]. This suggests an edge effect 
which becomes significant for small structures. 

V 
c- 

Figure 8 Boundary layer thickness over a flat plate of finite 
size. 

Comparing P1 and X1, we have A(l/Qf,) = (0.3 k 
0.1) x loe6 Hz-'. Consistent with theoretical reasoning, X1, 
with a larger area perpendicular to the direction of motion, 
has a slightly larger damping. This damping is most proba- 
bly a result of direct air resistance. It is reasonable to 
assume that this term (Qh)  is velocity-squared damping, and 
it is proportional to the density of the fluid pf and the cross 
section area facing the direction of motion. 

Dependence of damping on d and h 
Finally, the effects of air film thickness d and struc- 

ture thickness h on the damping are studied. Different d and 
h are fabricated with values at 2.1,3.1, and 4.1 pm. Q andf, 
are measured for the same design P2 from a total of nine d 
and h combinations. Although Eq. (2) predicts that the reso- 
nant frequency is independent of both d and h in theory, the 
measured values for f, increase slightly with increasing h 
and d, probably a result of increasing effective w with 
increasing h (a process limitation). To eliminate this effect, 
the measured f, and Q for all combinations are scaled to the 
frequency f, = 7.2 kHz (at d = 2.1 pm and h = 2.1 pm). The 
values of Q for P2 are plotted as a function of d and h in Fig. 
7. When d (or h) increases from 2.1 to 4.1 pm, Q increases 
by a factor of 1.3 (or 1.6). 
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where a is a scaling factor. When the dimension of the plate 
is large compared to the air film thickness, the assumption 
of infinite plate is acceptable, i.e. (a = 1). With small 
dimension plates, a depends on the design of the plates, and 
is greater than one. Empirically, (a = 3) is appropriate for 
comb structures, and (a = 2) is suitable for other small 
dimension structures (with dimension 2 to 10 pm). 

Combining the results of Eq. (8) and (12), we have 
the following expression for the overall Q 

- -  1 -  ’ ( 3 ( l + g ) + $ ) + &  d (13) 

Q J-dh 

where Qh is the term to account for direct air resistance. 

Using Eq. (13), Q for structure PO can be recalcu- 
lated (see Table 6). If Qh is ignored, we have Q = 17.2. A 

contribution of (l/Qh = 2 x will give Q = 16.6, which 
is the measured value. Equation (13) also gives satisfactory 
estimations of Q for all other structures. It can also be used 
to explain the behavior of Q as a function of d and h, which 
is reflected by the second and third terms. 

Table 6: Estimation of Q for PO 
Term Damping elements Area a 1/Q 

1 large areas (central and fin- 7.2 1 1.87 

1 small areas (beam and truss) 1.4 2 0.72 
1 small areas (comb fingers) 3.2 3 2.48 
2 inter-comb fingers 3.2 - 0.75 
3 direct air resistance est. - 0.20 

Total 6.02 

[io3 pm2] 

ger bars) 

CONCLUSIONS 

We have investigated experimentally and theoreti- 
cally various mechanisms of viscous air damping in later- 
ally oscillating planar microstructures. The results indicate 
that a better agreement between experiment and theory can 
be obtained by including edge and finite-size effects to the 
Couette and Stokes theories. This is especially useful for 
modeling Q of small structures and comb drives. Also when 
the characteristic dimension of the structure d is not too 
small, using continuum flow theory is a good approxima- 
tion, even for the cases with d = 33h. Future research will be 
in the area of 3D finite-element modeling of small-size and 
edge effects of viscous damping. 
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