SURFACE MORPHOLOGICAL CHANGES AS BIOMARKERS FOR DETECTING MALARIA INFECTED AVIAN ERYTHROCYTES

Y.-H. Hsu¹, J. L. Coleman², and W. C. Tang¹

¹Department of Biomedical Engineering, University of California, Irvine, USA
²Department of Molecular Biology & Biochemistry, University of California, Irvine, USA

ABSTRACT

This paper reports the preliminary finding that the unique surface morphologies of avian red blood cells (aRBCs) infected by the malaria parasite Plasmodium gallinaceum enables the cells to interact with the roughened surface and become immobilized inside the microfluidic channels. It is also found that a roughened glass substrate with ten-point-height larger than the depth of surface lesions and furrow-like structures of malaria infected aRBCs (miaRBCs) shows a substantial enhancement of immobilizing infected aRBCs. These findings indicate that surface morphologies, including surface lesions and furrow-like structures, can serve as alternative biomarkers for malaria diagnosis in addition to the elevated stiffness and cyto-adhesion characteristics.

KEY WORDS: Malaria, cellular diagnostics, cell mechanics.

INTRODUCTION

In recent years, advances in research tools of cell mechanics enabled the studies of mechanical differences between normal RBCs and malaria infected ones [1]. It was found that malaria infected human RBCs lose their biconcave shape, become more spherical, and exhibit elevated stiffness by up to ten times that of healthy ones. Furthermore, knob-like protrusions are formed on the cell surfaces starting at the trophozoite stage in the life cycle of the parasite and cause severely sequestration characteristics, especially for the P. falciparum strain [2]. These protrusions mediate the cyto-adhesion behavior of infected human RBCs to vascular endothelium, which makes the cells sticky [3]. These findings suggested that at least three mechanical biomarkers could potentially be used to diagnose malaria: (a) elevated stiffness of the cell body, (b) altered cell morphology, and (c) cyto-adhesive characteristics of the cell surface.

In this paper, we report on the preliminary experimental findings that the surface morphological changes of RBCs due to malaria infection could be a biomarker for diagnosing malaria. In particular, it was found that the P. gallinaceum infected avian RBCs also lose their oval shape and exhibit modified surface morphology [4]. P. gallinaceum parasite leaves a visible lesion on the cell surface after invasion, and it also starts to form furrow-like structures on the cell surface at the early trophozoite stage. These features are uniformly distributed on the cell surface and persist in the remaining cycle with identical density and distribution. The dimensions taken from AFM of this furrow-like structure are around 57.3 nm in width, 7.6 nm in depth, and between 225 nm to 750 nm in length [4]. To verify that the unique surface morphology of infected RBCs can also served as a biomarker, a microfluidic device that could control wall shear rate and total screen volume were developed and tested for functionality and efficacy.

EXPERIMENTAL AND RESULTS

A microfluidic platform with a long and narrow channel was designed to study the feasibility of using the surface morphology of miaRBCs as the biomarker for malaria diagnostics. The basic design concept is illustrated in Fig. 1(A). The diagnostic channel is 11 mm long, 340 µm wide and 50 µm deep, and is flanked by two perfusion channels with 2 µm shallow openings. The square cross-section of each of the perfusion channels is 50 µm on a side. This microfluidic platform was made from standard polydimethylsiloxane (PDMS) molded from an SU-8 mold and bounded onto a 170 µm thick glass cover slide with controlled surface roughness. AFM measured ten-point-height surface roughnesses of untreated surface [Fig. 1(B)], surface after 1-minute treatment with 2% HF [not shown], and surface after 2-minute treatment with 10% HF [Fig. 1(C)] were around 2.0991 nm, 3.1988 nm, and 14.7238 nm, respectively.

The chicken blood sample was collected by heparin coated capillary tube and was then diluted to 10% v/v with CO₂ independent culture media. This concentration allowed RBCs to spread evenly in the diagnostic channel as a monolayer, maximizing the likelihood for each cell to interact with the roughened substrate. The diluted blood sample was then flowed into the diagnostic channel under a controlled wall shear rate. It was found that miaRBCs exhibit the highest interaction probability with the roughened substrates under wall shear rate between 2.1 to 3.2 s⁻¹, and the immobilizing rate of normal RBCs was minimized. In current studies, the wall shear rate was maintained under 2.1 s⁻¹. By controlling the total number of RBCs flowing through the diagnostic chamber, the sensitivity, efficiency, and specificity of using a roughened surface to capture miaRBCs were characterized. Residual heparin and blood plasma were slowly diluted and flushed away with fresh media diffused through the 2 µm openings from the perfusion channels. These shallow openings created a high fluidic resistance into the diagnostic channel, minimizing disturbance on the miaRBCs. Immobilized miaRBCs were verified visually by flowing 1 mg/ml DAPI through the perfusion channels.

By controlling the wall shear rate at 2.1 s⁻¹ and use untreated glass slides as substrate, we found that infection % and the immobilizing efficiency of miaRBCs held a linear relationship, as shown in Fig. 2. The slope of the best-fit line is 0.906, intersecting the y-axis almost at the origin. This is consistent with the assumption that each cell in the diagnostic channel has equal probability to interact with the roughened substrate and is independent of the other cells. The immobilizing sensitivity and efficiency of normal RBCs were always lower than 0.073% and 0.057%. The specificity
increased from 73.33% to 99.18% with 3.2% to 20.1% infection samples.

To verify that the capturing mechanism was based on the nano protrusions of the roughened substrates, identical experiments were also taken with HF treated glass substrates. The experimental results of using 2% HF treated substrate did not show improvement in immobilization sensitivity. The variations were between –5.5% and 5.5%. This could be due to the face that the ten-point-heights of these two substrates were still within the depth of furrow-like structures. However, significant increase in capturing sensitivity were observed on the 10% HF treated glass substrate, which had almost twice the depth of the furrow-like structures. Figure 3 shows two experiments conducted under two different shear rates by using 28% infected blood sample. The total captured miaRBCs increased by 44.35% and 31.37% under shear rate around 3.2 and 2.14 s⁻¹, respectively. This demonstrated that a roughened substrate with nano scale protrusions can interact with the surface lesions and furrow-like structures and provide a separation mechanism to capture miaRBCs.

CONCLUSION

The experimental results reported here demonstrated that the unique surface morphology of miaRBCs could potentially be used as an alternative biomarker to perform malaria diagnosis. The surface lesions and furrow-like structures interacted with a roughened surface, resulting in a drag force that slowed down and eventually immobilized miaRBCs. It was also found that the immobilizing efficiency of miaRBCs exhibited a roughly linear relationship with the degrees of infection. Experiments with different surface roughness also demonstrated that immobilization sensitivity can be enhanced by using substrates with nano scale protrusion higher than the depth of the furrow-like structures.

ACKNOWLEDGMENTS

This work was supported in part by the Defense Advanced Research Projects Agency (DARPA) under the N/MEMS Science & Technology Fundamentals Program, grant no. N66001-1-4003, the UC Irvine Micro/Nano Fluidics Fundamentals Focus (MF3) Center, and the Undergraduate Research Opportunity Program at UC Irvine.

REFERENCES